
Abstract The uses of hexaploid tritordeum as a crop for
human consumption require improvement of its bread-
making quality. For this purpose chromosome 1D of
bread wheat with the Glu-D1 allele encoding for high-
molecular-weight glutenin subunits Dx5+Dy10 was intr-
ogressed into tritordeum. Different primary tritordeums
were crossed with wheats carrying subunits Dx5+Dy10.
The hybrids were backcrossed to tritordeum and seeds
for the next backcross (or selfing) were selected for the
presence of chromosome 1D using SDS-PAGE. Forty
two chromosome plants carrying subunits Dx5+Dy10
were obtained after two backcrosses and selfing. Chro-
mosome characterization of these plants using fluores-
cence in situ hybridisation (FISH) proved that either
chromosome substitution 1Hch/1D or 1A/1D had been
obtained. A homozygous plant with a translocation of
the entire 1DL arm to 1HchS was also obtained. The
complete chromosome substitution lines have better ag-
ronomic characteristics than the lines with transloca-
tions.
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Introduction

Plant breeders have been interested in crossing wheat
(Triticum spp.) and barley (Hordeum vulgare) since the

beginning of the past century (Farrer 1904), but amphi-
ploids, × Tritordeum Asch. et Graebn. (1902, http://
www.bgbm.fu-berlin.de/iapt/nomenclature/code/tokyo-e/
Art_h08.htm), were obtained only when wild relatives of
H. vulgare, as for example Hordeum chilense, were used.
H. chilense Roem. et Schult. is a wild South American
diploid barley included in the Section Anisolepis 
(Bothmer et al. 1995). Hexaploid tritordeum [H. chilense
× Tritium turgidum conv. durum (Desf.) MacKey, 2n =
6x = 42, HchHchAABB] showed good fertility and chro-
mosome stability as well as a morphology similar to that
of bread wheat (Martín and Sánchez-Monge Laguna
1982). These and other favourable agronomic traits, such
as high biomass yield, number of spikelets/spike, seed
size and protein content, made us consider the potential
of this amphiploid as a possible new crop (Martín and
Cubero 1981) and later studies confirmed these expecta-
tions (Martín et al. 1999). However, their poor threshing
(brittle rachis or tough glumes) have limited its use as 
a new crop. The yield of advanced tritordeum lines is
similar to that of bread wheat, and free-threshing lines
are at present available. Nevertheless, building lines with
both traits is not a straightforward task.

The most accessible source of genetic variability in
the tritordeum-breeding program is the synthesis of new
amphiploids with a range of lines of H. chilense and du-
rum wheat. Although the possibilities for chromosome
manipulation by crossing hexaploid tritordeum with
bread wheat, or octoploid tritordeum (2n = 8x = 56,
HchHchAABBDD) and durum wheat, are also explored.
Both crosses easily produced hybrids of the genomic for-
mula AABBDHch which, after backcrossing to hexaploid
tritordeum, open the possibilities of introgressing the 
D genome into hexaploid tritordeum.

The acceptance of tritordeum as a new cereal will 
depend, besides yield or good agronomic performance in
general, on the quality of the grain, either as a feed or as
a food. As a feed, tritordeum has nutritional properties
similar to its durum wheat parent (Cubero et al. 1986)
with a higher pigment content (Alvarez et al. 1999). As a
cereal for human consumption hexaploid tritordeum
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shows properties similar to bread wheat (Alvarez et al.
1995). Although hexaploid tritordeum has promising
bread-making characteristics, it lacks the D genome,
present in bread wheat, and therefore the Dx5+Dy10 
glutenin subunits associated with high bread-making
quality (Payne et al. 1987). In this paper we describe the
introgression of chromosome 1D coding for the high-
molecular-weight (HMW) glutenin subunits Dx5+Dy10
either substituting chromosome 1H or chromosome 1A,
as well as the translocation 1HS/1DL, into hexaploid trit-
ordeum.

Materials and methods

Crosses between bread wheat (2n = 6x = 42, AABBDD) cv ‘Yecora’
carrying the Dx5+Dy10 HMW glutenin subunits, and hexaploid
tritordeums (2n = 6x = 42, HchHchAABB) were performed to 
obtain the hybrid AABBDHch in wheat cytoplasm. Recombinant
tritordeums HTC174, HTC178, HTC503 and HTC721 were used
as pollen donors in order to have hybrids with different genetic
backgrounds to overcome any shortcoming due to hybrid necrosis.
These hybrids were backcrossed two or three times to tritordeum.

Grains were divided into two pieces for chromosome counting
and HMW glutenin subunit determination on the same seed. The
embryo-less halves were used for endosperm storage protein anal-
ysis.

For somatic chromosome counting, root-tips were treated for
4 h with a 0.05% colchicine-aqueous solution, fixed in 3:1 etha-
nol-acetic and stained by the conventional Feulgen technique.

FISH

Somatic metaphase chromosome preparations and FISH protocol
was carried out according to Cabrera et al. (2002). Both the GAA-
satellite and pAs1 repetitive probes were used for chromosome
identification. The barley clone pHvG38 (Pedersen et al. 1996)
containing the GAA-satellite sequence was kindly provided by Dr.
S.K. Rasmussen from the Risø National Laboratory, Roskilde
(Denmark), and the pAs1 probe (1 kb) isolated from Aegilops
tauschii Coss. by Rayburn and Gill (1986) was kindly provided by
the Wheat Genetics Resource Centre, University of Kansas
(USA). The GAA-satellite and pAs1 probes were labelled with
digoxigenin-11-dUTP and biotin-11-dUTP respectively, by nick-
translation.

The in situ hybridization pattern observed after probing the
chromosome preparations with the GAA-satellite probe corre-
sponds to that previously reported in wheat by Pedersen et al.
(1996). The pAs1 probe especially hybridised on the D-genome
chromosome from wheat and Hch-genome chromosomes from trit-
ordeum. The pAs1 banding-pattern observed on both the 1D- and
Hch-genome chromosomes is in general agreement with that found
previously in wheat (Mukai et al. 1993; Pedersen and Langridge
1997) and H. chilense (Cabrera et al. 1995), respectively.

After examination of metaphases hybridized with the GAA-
satellite or pAs1 probes, preparations were re-probed with digoxi-
genin-labelled genomic H. chilense DNA. The biotin-labelled
pAs1-probe was detected with the Streptavidin-Cy3 conjugate
(Sigma). The digoxigenin-labelled GAA-satellite sequence and the
genomic H. chilense DNA were detected as was the anti-digoxige-
nin-FITC. Chromosomes were counterstained with DAPI (4′, 6-di-
amidino-2-phenylindole) or PI (propidium iodide) and mounted in
Vectashield. Signals were visualized using a Leica epifluorescence
microscope. Images were captured with a SPOT CCD camera us-
ing the appropriate SPOT 2.1 software (Diagnostics Instruments,
Inc., Sterling Heights, Michigan, USA) and processed with Photo-
Shop 4.0 software (Adobe Systems Inc.). Images were printed on
a Hewlett Packard Deskjet HP 840C Color Printer

Glutenin analysis

Proteins were extracted from crushed endosperm. Gliadin-free
glutenin was solubilized with 250 µl of buffer containing 50%
(v/v) propan-1-ol, 80 mM of Tris–HCl pH 8.5 and 2% (w/v) 
dithiothreitol at 60 °C for 30 min. After centrifugation, 200 µl of
the supernatant were transferred to a new tube, mixed with 3 µl of
4-vinylpyridine, and incubated for 30 min at 60 °C. The samples
were precipitated with 1 ml of cold-acetone. The dried pellet was
solubilized in buffer containing 625 mM of Tris–HCl pH 6.8, 2%
(w/v) SDS, 10% (v/v) glycerol, 0.02% (w/v) bromophenol blue
and 2% (w/v) dithiothreitol in a 1:5 ratio (mg/µl) to wholemeal.

Reduced and alkylated proteins were fractionated by electro-
phoresis in vertical SDS-PAGE slabs in a discontinuous Tris–HCl-
SDS buffer system (pH 6.8/8.8) at an 8% polyacrylamide concen-
tration (w/v, C = 1.28%). The Tris–HCl/glycine buffer system of
Laemmli (1970) was used. Electrophoresis was performed at a
constant current of 30 mA/gel at 18 °C for 30 min after the track-
ing dye migrated off the gel. Gels were stained overnight with
12% (w/v) trichloroacetic acid solution containing 5% (v/v) etha-
nol and 0.05% (w/v) Coomassie Brilliant Blue R-250. De-staining
was carried out with tap water.

Results and discussion

Three out of the four F1 hybrids were necrotic. Only the
hybrid ‘Yécora’ × HTC178 reached maturity and was
able to be backcrossed with tritordeum. Hybrid necrosis
has been observed in hybrids of similar genome constitu-
tion such as wheat × triticale and this fact has been one
of the obstacles to interchange genetic information be-
tween both species (Bizimungu et al. 1998). In order to
increase the chance of obtaining viable and fertile plants
we used a mixture of pollen from different genotypes
when backcrossing.

On the first backcross, BC1F1 plants expressing the
Dx5+Dy10 glutenin subunits and showing normal devel-
opment and morphology were selected. On the second
backcross, BC2F1 in addition to the previous selection
criteria, plants with a chromosome number close to 42
were selected.

The 1D chromosome transmission rate on the first
and second backcross was 31.49% (57/181) and 25.5%
(76/298) respectively, which facilitated the selection of
plants carrying the subunits Dx5+Dy10. The elimination
of the remaining D chromosomes was not rapid, most
likely because of a high transmission rate. Of the 76
BC2F1 seeds expressing the subunits Dx5+Dy10, 23 had
between 40 and 42 chromosomes. Thirteen of these
plants were analysed by FISH and all, except one
(THC214), had 30 or more wheat chromosomes 
(Table 1). Therefore the whole A and B genomes plus
two or more D chromosomes were present. 

The three BC2F1 plants with the higher fertility,
THC80, THC94 and THC272, were selected. In addition
THC214, which had 29 wheat chromosomes and 13 H.
chilense chromosomes, was also selected, although it
was male-sterile, under the presumption of it being a
monosomic substitution 1Hch/1D. THC214 was back-
crossed to tritordeum again.
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Acquisition of substitution 1Hch/1D and the 1HchS/1DL
translocation

The progeny of THC80, THC94 and THC272 segregated
for the HMW glutenin subunits coded on the 1Hch and 1D
chromosomes. Chromosome number and HMW profile
was determined on 20 seeds from each selfing. On this ba-
sis, the transmission rate of chromosome 1D was deter-
mined as being higher than the transmission of chromo-
some 1Hch (Table 2). Plant THC80-31 (BC2F2) was select-
ed on the basis of fertility and good grain filling as well as
the absence of HMW proteins coded on chromosome 1Hch

(Alvarez et al. 2001) and the presence of the subunits
Dx5+Dy10, although its chromosome number was 41.
Again, chromosome number and HMW profile was evalu-
ated on the progeny of this plant. Fifty BC2F3 seeds were
analysed and all the grains had the subunits Dx5+Dy10
and Bx17+By18, and lacked the subunits coded at 1A and
1Hch. The chromosome number of these plants ranged be-
tween 40 and 42. Twenty six plants had 42 chromosomes
and a fertility between 65 and 90%. The chromosome
number on ten seeds from each of the former BC2F3 plants
was scored. Six plants in which no aneuploids were found
were selected for FISH analysis. On the progeny of these
plants, BC2F4, disomic substitutions (Fig. 1) and a plant
heterozygous for a translocation, 1HS/1DL, were found.
These plants were selfed and from its progeny a homozy-
gous plant was found based on the LMW proteins coded
by the 1DS chromosome arm (Fig. 2). 

In Fig. 2, an electrophoregram of wheat and trit-
ordeum, together with the substituted and translocated

lines, are presented. In the box on lane 3, corresponding
to the translocation T1HchS. 1DL, an appreciable change
in the profile for the LMW glutenin subunits was seen,
where the marked bands, coded on the short arm of chro-
mosome 1D, were absent. The homozygotic nature of the
translocation was confirmed by FISH (Fig. 1c).

Acquisition of substitution 1A/1D

As stated previously THC214 was male sterile and was
backcrossed to tritordeum again. Four out of 26 BC3F1
seeds from this backcross expressed the subunits
Dx5+Dy10, and two of them, with 42 chromosomes,
were partially fertile and were named HT 284 and HT
285. The pro-geny of both plants (BC3F2) segregated for
the subunits Dx5+Dy10 but all of them expressed 1Hch

and 1B glutenin subunits. The chromosome number of
BC3F2 plants varied between 40 and 44 and the number
of H. chilense chromosomes ranged between 12 and 14.
Two of these plants, named HT284-28 and HT285-49,
with 42 chromosomes (14 of them H. chilense chromo-
somes) carried a substitution of chromosome A or B for
chromosome 1D. The high fertility of this plant, plus the
expression of 1B and 1D glutenin subunits, suggest a
balanced monosomic substitution 1A/1D.

HT285-49 progenies segregated for the Dx5+Dy10
subunits after five selfings. Nevertheless, on the proge-
ny of HT284-28, BC3F4 plants were identified which
were homozygous for the Dx5+Dy10 subunits (Fig. 2).
To confirm the substitution 1A/1D, FISH with total ge-

Table 1 Chromosome number
and fertility of BC2F1 plants
(bread wheat × tritordeum) ex-
pressing the Dx5+Dy10 sub-
units

Plant Chromosome Wheat H. chilense Fertility
number chromosomes chromosomes

THC 20 42 32 10 Low
THC 80 42 32 10 Medium
TCH 94 41+1 telo 30 + 1 telo 11 Medium
THC 103 42 30 12 Low
THC 119 42 32 10 Low
THC 168 40 + 1 telo 30 + 1 telo 10 Low
THC 185 42 31 11 Male-sterile
THC 205 41 31 10 Low
THC 214 42 29 13 Male-sterile
THC 231 42 31 11 Low
THC 236 40 30 + 1 translocac 9 Low

chilense-wheat
THC 238 41 + telo 31 10 + 1 telo Male-sterile
THC 272 42 31 11 Low

BC1F1 BC2F2 plants

1D 1Hch 1D 1Hch 1D 1Hch 1D 1Hch Total 1D 1Hch

p p p a a p a a % %

THC80 5 8 1 5 19 68 47
THC94 6 3 1 6 16 56 25
THC272 5 9 2 4 20 70 55

Table 2 Segregation of HMW
glutenins subunits codified
by 1D or 1Hch chromosomes,
on BC2F2 (bread wheat ×
tritordeum). (p = present; 
a = absent)
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nomic DNA and the probe pAs1 was performed
(Fig. 1c).

The high fertility and normal morphology of the
1Hch/1D disomic substitution on tritordeum confirm the
homoeology between H. chilense and Ae. tauschii, which
has been previously established both at the cytological
level by in situ hybridisation with probe pAs1 (Cabrera
et al. 1995) and comparative mapping (Hernández et al.
2001).

Obtaining the translocation 1HchS/1DL is a first step
to the production of the translocation of a small chromo-
some segment, 1D, in 1Hch. The tritordeum with the sub-
units Dx5+Dy10, and a reduced amount of chromosome
1D, will allow normal chromosome pairing when breed-
ing tritordeum, and therefore reducing sterility, usually
associated with hybrids between tritordeum lines differ-
ing in a chromosome or chromosome arm.
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